$$
\begin{equation*}
\Lambda_{0}(\theta)=\frac{\theta^{0.5}}{\sum_{i=1}^{5} n_{i} \theta^{1-i}} \tag{3.5}
\end{equation*}
$$

where ${ }_{-}=T / T_{\mathrm{c}}$ with $T_{\mathrm{c}}=647.096 \mathrm{~K}$; the coefficients n_{i} are listed in Table 3.4. The correlation equation for the second function of Eq. (3.4), $\Lambda_{1}\left(\delta,,_{-}\right)$, reads

$$
\begin{equation*}
\Lambda_{1}(\delta, \theta)=\exp \left[\delta \sum_{i=1}^{5}\left(\left(\frac{1}{\theta}-1\right)^{i-1} \sum_{j=1}^{6} n_{i j}(\delta-1)^{j-1}\right)\right], \tag{3.6}
\end{equation*}
$$

where $\delta=\rho / \rho_{\mathrm{c}}$ and ${ }_{-}=T / T_{\mathrm{c}}$ with $\rho_{\mathrm{c}}=322 \mathrm{~kg} \mathrm{~m}^{-3}$ and $T_{\mathrm{c}}=647.096 \mathrm{~K}$. The coefficients $n_{i j}$ are given in Table 3.5. The function $\Lambda_{2}(\delta,-)$ represents the critical enhancement of the thermal conductivity. This additive contribution is defined for IAPWS-IF97 regions 1-2 and 3 by

$$
\begin{equation*}
\Lambda_{2}(\delta, \theta)=n_{1} \frac{\delta \theta}{\Psi} \frac{c_{p}}{R} A, \tag{3.7}
\end{equation*}
$$

where $\delta=\rho / \rho_{\mathrm{c}}$ and ${ }_{-}=T / T_{\mathrm{c}}$ with $\rho_{\mathrm{c}}=322 \mathrm{~kg} \mathrm{~m}^{-3}$ and $T_{\mathrm{c}}=647.096 \mathrm{~K}$. The numerical constant n_{1} is given in Table 3.6. The variable $\Psi=\eta / \eta^{*}$ with $\eta^{*}=1 \times 10^{-6} \mathrm{~Pa}$ s represents the dimensionless dynamic viscosity calculated from Eq. (3.1); see Section 3.1. The calculation of the enclosed specific isobaric heat capacity c_{p} depends on the region where the given state point is located. Its calculation will be described later in this section. The variable R in Eq. (3.7) represents the specific gas constant of water and is given in [36] by $R=0.46151805 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. This value for R is different from the value given in Sec. 1 but is consistent with Eq. (3.7). The function A^{23} is defined by

$$
\begin{gather*}
A=\frac{n_{2}}{a}\left[\left(1-\frac{1}{b}\right) \arctan (a)+\frac{a}{b}-1+\exp \left(-\frac{1}{a^{-1}+\frac{1}{3} a^{2} \delta^{-2}}\right)\right], \tag{3.7a}\\
\text { with } a=n_{3}(\delta B)^{n_{4}}, \tag{3.7b}\\
B=p_{\mathrm{c}} \delta \kappa_{T}-n_{5} \theta^{-1} C, \tag{3.7.c}\\
C=\frac{1}{\sum_{i=1}^{6} n_{i} \delta^{i-1}}, \tag{3.7d}\\
\text { and } b=c_{p} / c_{v}, \tag{3.7e}
\end{gather*}
$$

[^0]
[^0]: ${ }^{23}$ The quantity A corresponds to the quantity $Z(y)$, Eq. (19), in the release [36]. The quantity $\Delta \bar{\chi}$ in Eq. (23) of [36] was replaced by the quantity B, Eq. (3.7c), which contains the isothermal compressibility κ_{T}. Thus, the calculation of the partial derivative $(\partial \bar{\rho} / \partial \bar{p})_{\bar{T}}$, Eq. (24) of [36], is avoided. The isothermal compressibility κ_{T} can be straightforward calculated from the IAPWS-IF97 basic equations as described below Eq. (3.7e).

